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Part 1



Why GenAl in Life & Molecular
Sciences?
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Drug discovery 2.0: The premise of GenAl is to speed up the process (and make it cheaper)
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What can we do with GenAl In
Life & Molecular Science?
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GenAl to:
Explain response via key
mechanism
Discover novel insights
through lab-in-the-loop

Predict responses for

therapies

Noutahi, E. et al. (2025, June). Virtual Cells: Predict, Explain, Discover. arXiv

Drug discovery stage

Applications

Capabilities

Understanding Disease
Mechanisms

Compare healthy vs. diseased states to identify perturbed regu-
latory mechanisms and disease-specific vulnerabilities

Explain, Discover

Explain how genetic backgrounds alter disease mechanisms, vari-
ability in disease manifestation, and drug responses to identify
robust, context-specific druggable entry points

Explain

Target Identification &

Discover and prioritize disease-driving genes by simulating the
functional consequences of mutations, loss-of-function events,
splicing variants, and dysregulated expression

Explain, Discover

Predict target essentiality (pan-cell or context-specific) and co-

R 3 > z Predict
Validation dependencies (e.g., synthetic lethality) R
Predict target druggability and downstream effects of modulating 5
) B Predict
a specific target in disease-relevant contexts
Perform large-scale virtual screens of compounds, predicting Predict
Hit Identification & activity across multiple cell lines and contexts
Compound Screening Predict compound selectivity and off-target effects across cell Predict

types (e.g., toxicity versus efficacy)

Mechanism of Action
Studies

Map compound phenotypic responses to upstream molecular
events and generate plausible MoA hypotheses through reasoning
over structural and functional data

Explain, Discover

Explain polypharmacology using multimodal perturbation sig-
natures

Explain

Predict molecular and phenotypic outcomes following compound
perturbation, capturing both acute (short-term) and chronic
(long-term) response dynamics

Predict

Hit-to-Lead & Lead
Optimization

Predict and explain structure-activity relationships (SAR) to
guide minimal structural modifications that enhance efficacy,
optimize selectivity, or reduce liabilities

Predict, Explain

Predict ADMET profiles to optimize pharmacokinetic and safety
properties

Predict

Identify mechanisms and guide designs for emerging therapeutic
modalities (allosteric modulators, covalent inhibitors, and glues)

Explain, Discover

Resistance Prediction &

Predict and explain emergence of drug resistance through path-
way rewiring, feedback loops, or network-level adaptation

Predict, Explain

Predict clonal evolution dynamics and selection pressures in

5% i Predict
Disease Evolution response to therapeutic interventions
Discover rational combination therapies or synthetic lethality 5
3 F Discover
strategies to overcome or delay resistance
Explain context-specific compound activity (e.g., toxicity in one 3
5 2 Explain
tissue versus efficacy in another)
Preclinical & Predict therapeutic, immune, and inflammatory responses across :
= . : % : Predict
Translational Modeling _ patient-derived and experimental models
Discover robust biomarkers predictive of patient-specific thera- .
. Discover
peutic responses
Inform patient stratification strategies and biomarker-based Discover
Clinical Trial Design & _ inclusion criteria
Biomarker Strategy Predict optimal human dose and combination schedules for Predict

clinical studies




GenAl as digital models of biology/chemistry

Model Generate Design Test Analyze Update
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Noutahi, E. et al. (2025, June). Virtual Cells: Predict, Explain, Discover. arXiv 9



But first: What is GenAl?



GenAl = Generative Modeling with Deep Neural Networks

Score
models

Score-based
models

Transformer

Normalizing
Integer NTs
NFs

Continuous
NFs

Flow-based
models

Deep Generative Energy-

. based
Modeling models

Joint

models

Latent
Variable
Models

Implicit
models
Prescribed
models

GANs

Jakub M. Tomczak

Deep

Generative
Modeling

Second Edition

) Springer
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The marginal-conditional-joint triangle

Probability
distributions
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Autoregressive models

General idea is to factorise the joint distribution:

D

p(x) = p(x1) | | p(@alx1:a-1)

d=2
and use neural networks (e.g., convolutional NN) to model it efficiently:
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Autoregressive models

Parameterizing conditional distributions with Convolutional Neural Networks

O 0 0O 0 0 0 O o

softmax
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Use dilation to
enlarge the context
window!
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Autoregressive models as parts of other models

Discrete Discrete
latents cesseoee :. aaaaa e latents

i Condition WaveNet Condition

. Prior

Encoder g
: WaveNet >0 224 * WaveNet

Downsample 64x ; . ) :
Fopogsporepores Decoder Fopors : Decoder

--------------------------------

reconstruction generation

15

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.



Autoencoders parameterized by Transformers

Transformer(seq):
X=WT
e seq
for [in range(L):
X=X+ M(X)

X = LayerNorm(X)

vn x =MLP(x )+ x_

X = LayerNorm(X)

V — vocabulary

T = tokenizer(sequence, V) € {0,1}V*N
W_e RVl — embedding

M € RPN — multi-head attention

Transformer Block (x L)

O—{___ 1 B
O— . % P -
I e | . SRR SR
O—{___ 1 % P H
O— - o -

Self-attention LayerNorm LayerNorm
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Autoencoders parameterized by Transformers

An example:
M e RDXN
M = W,[AT AT]" W, € RPXD
Ah € RD/ZXN

—»D/H

- Head 1)
—D/H
o
D/H —D/H
Keys Head 1 Output,
Sa; [X]

A, = V Softmax (KTQ/\/g)

where:
V=W,X+b, €RP/2xN
K = Wi X + b, € RP/2XxN
Q = WQX+ bQ = RD/ZXN

Simon J.D. Prince, MIT Press, 2023,
“Understanding Deep Learning”

D

Concatenate
and transform,

Q. [s.1[x1T, S.z[x]T]T
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Autoencoders parameterized by Transformers: Encoders

Transformer Block (x L)

Trained for O— — > >{Lineat->{Sotmax—>()
reconstructing O— (1 % e > Cinear->{Sotmax > ()
(with masking). O—{ | S S O W N T N o {80} > e — >
R—{ % M >{Linear|—>{Softmax}—>( )
O—{ - | a —>{Linear}—>{Sotmax}—()

Self-attention LayerNorm MLP LayerNorm

Transformer Block (x L)

Trained for O—{ e T E o
decision making. (o ‘% N ¥
O— D> b D el s O
O—{ —% -
O—{ IS o
Sefattenion Layeom WP LayerNom
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Autoencoders parameterized by Transformers: Decoders

Trained for generating

Transformer Block (x L)

O—{ ol § >{Linear}>{sotmar ()

O— (M L ~>{Linear}->{Softmax}—> ()

O— ) > % N G W N T 7 NI v »{TiEE > St

O—{_ H >+ -»{Linear|>{Softmax|—>()

O—{ (- ) >{Linear}—{Softmax|—>()
Causal self-attention LayerNorm MLP LayerNorm
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Autoencoders parameterized by Transformers: Encoder-Decoders

Transformer Block (x L)

¥
|

Trained for conditional
generating.

v

T

[

K2

i
JO OO
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NE
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Self-attention LayerNorm MLP LayerNorm

Transformer Block (x L)

O—»[_}— i > — —yLinear}—»jéBttmiai}—»O
O—H - > — ->{Linear | —»{Softmax|—» O
X 4 v :
O—H } > > > > —>€9—> >o—1> | {) > »e—»{Linear —»{Softmax }—»O
O—H - % > = 1>/ Linear —»| Softmax }—»O
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. Cross self- %
Causal self-attention : LayerNorm MLP LayerNorm
attention
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Flow-based models

Sample from a “simple” distribution:
20 ~ qo(z|x) = N (z|u(x), diag(o? (x)))
Apply a sequence of K invertible transformations: fk . RM — RM

q0(20[x) q1(21 %) fK Ik (2K |x)
l !! l (S S l {)f
-

0

and the change of variables yields:

Ofr(2p—1) |

Zi|X) = qo(zp|Xx det
aic (2 |%) = qo (20| %EJ |
21

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015



Flow-based models

Zo0 — T,

7

1,

'

log |detJr,(zg)| + log|detJr,(z1)| + -+ + log|detJr, (zx—1)|

'

TK — ZK

'

log | det Jr(zo)|

Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. Normalizing Flows for Probabilistic Modeling and Inference. JMLR, 2021
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Flow-based models: Affine coupling layers

T is the affine transformation
s and t are the scaling and translation

/ /
Z1 Z4

/ /
Zar1l " |%D

L
S, t r”_ FT—

Z]. coe Zd J

Zd+1

Forward
Z,sd =Zgqg

z’q = exp(s(z<q)) O 2Zsq + t(Z<q)

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

Y ¥ j A4
Zl coe Zd

Zd+1l - |ZD

Inverse
14
Zeg =2y

Z>q = eXp(_S(zsd)) O, (z,>d - t(zsd))
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Flow-based models: Affine coupling layers

/! / 4 LY U / “en / 4 CEXY /
21| | ’Zd+1’ ‘ZD‘ ‘ Zl‘ ‘Zd ‘ 21 Zp

Why it’s so special about affine coupling

| ? N ~
ayers HT]JE] ELFE]

S, t
The Jacobian is easily computable!
Z1| et | Zd ‘Zd+1‘ ‘ZD‘ ‘Zl‘ ‘Zd‘ Zd+1| =t |ZD
Forward Inverse
Iixa Oax(p-a)

Jr(z) = (0254

diag(exp(s(z<q)))

0Z4
D-d D—-d
det]r(z) = 1_[ exp(s(z<q)), = exp Z s(Z<q);
i=1 =1

24

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015



Latent Variable Models

We assume data lies on a low-dimensional manifold so the generator is:

x = fo(2)

where:

x € X (eg. X=R") and z € R?

Two main approaches:
— Generative Adversarial Networks (GANSs)

— Variational Auto-Encoders (VAES)

25



Generative Adversarial Networks

We assume a deterministic generator:

x = Gy(z)
and a prior over latent space:

z ~ px(2)
How to train it? By using a game!

For this purpose, we assume a discriminator:

D¢(X) = [07 1]

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014 26



Generative Adversarial Networks

The learning process is as follows:
— the generator tries to fool the discriminator;

— the discriminator tries to distinguish between real and fake images.

We define the learning problem as a min-max problem:

m@in max Exnpyora [ln Dy, (X)} —Egps (2) [ln (1-— DMG(Z)))}
In fact, we have a learnable loss function!

But the min-max problem is hard to solve.

27

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014



Variational Auto-Encoders

We assume a stochastic generator (decoder) and a prior:
z ~ pi(2)

X ~ po(x|z)

Additionally, we use a variational posterior (encoder):

z ~ q¢(2[x)
For Gaussians, we can use the re-parameterization trick to lower the gradient variance:
Z=U+0-€

How to train it? Using the log-likelihood function!

For the variational inference, we get the evidence lower-bound (ELBO):

Inp(x) > Eynqy (z)%) {lnpg(x|z)} — KL {q¢(z|x)||p>\ (z)}

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. (ICLR 2014) 28



Variational Auto-Encoders

Deriving the ELBO:

logpﬁ (X) — log /pe (X Z) P (Z)dZ/Variational posterior

— 1og/ Zz(z i)pe(X|Z) pa(z)dz

> /qu(z\x) log pH(z]‘(l?i'Z?(Z)dz

= Epgy (z%) [10gP9(XIZ)} — KL (qcb(Z!X)HpA(Z))

29



Variational Auto-Encoders

Deriving the ELBO:

log ps (x) = log / po(x|2) pa(z)dz
:@/ Zigz i;pg(X|Z) pi(z)dz

c(loape(x[z) pA(z) |
wq¢( xNog q4(z|x) d

= Epgy (z%) [10gP9(XIZ)} — KL (qcb(Z!X)HpA(Z))

Jensen’s inequality

V

30



Variational Auto-Encoders

Deriving the ELBO:
po(x[z) pr(z)dz

= |
/ 99 (21%)

q¢(z|x)
pe(X|Z) 23C

p(E010 q0(2|%)

log py(x

po(x|z) px(z)dz

N

[V

= Eyegy o) | 108 0 (x]2) | — KL (a5(2[)][p2 (2) )
\ ) J
Reconstru'ction error Regula'rization

31



Diffusion-based models

Imagine hierarchical VAE with variational posteriors being very simple Gaussians defined as follows:

q(z¢|2z:1) = N(Zt|\/ 1 — Bizi—1, BeI)

An example:
forward diffusion process

backward diffusion process

The ELBO is the following (nothing new but if T is large, it’s super hard to calculate it!):

log p(x) = Eg(z,4/x) log p(X, 21.7) — log q(z1.7[x)]

Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International conference on machine learning. pmir, 2015.
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Diffusion-based models

Let’s notice that the forward diffusion process is a composition of linear Gaussian models, hence, we can
calculate the following distributions:

q(z¢|x) = N (2] v/oux, (1 — a)I)  where: o = [ [ (1= Bs)

s=1
and 9
q(z¢|Ze+1, %) = N (2¢|pe (%, 2441), 03 T)
where:
1
Nt(xa Zt+1) — 1 ((1 - at)\/l — Bi+1Zi41 + \/a—t/BH—lx)
— Ot

o2 — 5t+1(1 — Oﬂt)
t 1 — (0 7| 33




Diffusion-based models

Then the super expensive ELBO:
logp(x) 2 IE‘zq(z1:T|x) [logp(xa Zl:T) - ]-Og q(z1:T|X)]

becomes:

log p(x) > Ey(z,x) log p(x|21)] — Bt [Aelle — ea(z(x, €),1)]|*] — Egarix) llog

q(zr) ]

p(ZT)

and:

- We can approximate the middle term by sampling t and use MC-samples for calculating the ELBO
- We can even set A, to 1 (a.k.a. the simple loss)

- Training: Sample t, sample noise e, sample z,, then predict noise €, and calculate the update.

34

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.



Diffusion-based models for modeling joint distributions

We can learn a joint distribution with a diffusion model and take advantage of representations learnt by the
UNet. For example, visual counterfactual explanations.

Generations o Predictions

0.0 '
1. Forward diffusion: Adding 20% of noise (=0 — t=0.2T7)

2. Flipping the label
~ s 3. Backward diffusion: Generating (t=0.2T — t=0)

Uninfected cells Parasitized cells
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Energy-based models

An Energy-based model (EBM) specifies a density of x by:

e—Ee(X)

where: Zy = Ze—EQ(X)

This is a widely-known as Boltzmann distribution.

The energy function E defines high-energy (i.e., high-probability mass) regions, e.g. (Restricted Boltzmann
Machines):

Fy(x,2) = —x Wz—-b'x—c'z
Modern EBMs: the energy function = a neural network.
Inspiration: statistical physics.

It belongs to the exponential family of distributions: p(x) = e7®)7x) - A@®) + B(x)

36



Part 2



How can we use GenAl in drug
discovery?

38



How can we use GenAl in drug discovery?

GenAl to:
e Explain response via key

mechanism p(x, y)
e Discover novel insights

through lab-in-the-loop ‘
e Predict responses for

therapies

Probability
distributions

‘4

Multiplication gives the joint
p(y[x)

39



How can we use GenAl in drug discovery?

GenAl to:
e Explain response via key

mechanism p(x, y)
e Discover novel insights

through lab-in-the-loop ‘
e Predict responses for

therapies

Probability
distributions

Multiplication gives the joint
p(y[x)
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Protein solving

Predicting the three-dimensional structure that a protein will
adopt based solely on its amino acid sequence has been an
important open research problem for more than 50 years.

Goal: Given a 1D sequence of amino acids, predict a 3D
structure of a protein.

/ EXAMPLE: CASP14 competition \

The CASP assessment is carried out biennially using
recently solved structures that have not been deposited in
the PDB or publicly disclosed so that it is a blind test for the
participating methods, and has long served as the
gold-standard assessment for the accuracy of structure
prediction.

CASP14 was considered particularly challenging compared
to previous CASP competitions. For instance, the
competition included many proteins with limited homologous

sequences in databases, making it harder for methods that
ely on evolutionary information. 4




AlphaFold 2

THE NOBEL PRIZE
IN CHEMISTRY 2024

a
44 N terminus
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'c:m 34
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John M
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4 “for computational “for protein structure prediction”
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Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589. 42



AlphaFold 3

a
L Ligands PoseBusters set Nucleic acids Covalent modifications Proteins
100 T v Ars 7 7 AFs r
ki RoseTTAFold2NA W AF-M23
Alchemy_RNA2 (has human input) ek Fokk U
801 =1 . Hohk = { S |
*x
8 | 5
8 i
3 407 | E * - -
‘ o0
20 E | e s B
0 T T T T T T T T T T T | T
AF3 AutoDock  RoseTTAFold PDB PDB CASP15 Bonded Gl lati fi i All Protein- Protein
2019 cut-off Vina All-Atom protein-RNA  protein-dsDNA RNA ligands n=28 z teil teil ibody
n=428  n=428  n=427 n=25 =38 n=8 =66 Pt N RN n=1064 =65 n =338
.. Template ' :
. search
— ; t Confidence |
Genetic > e . v l 1 ] foaise
search 1 l (4 blocks)
Sy Template MSA L l
< 5 Input
e 4, emedder ~#> module —| module - Dt 100
. Confor;per ¢ 2— @ blocks) | Py ’ (2 blocks) | | (4 blocks) Pairformer H Gbs Diffusion o, i}, &'
Sequences, genaration (48 blocks) * D> module % Y
ligands, | A (3+24 +3blocks) | i)
covalent ‘ Singl i i 7
bonds
Recycling Diffusion iterations

Abramson, Josh, et al. "Accurate structure prediction of biomolecular interactions with AlphaFold 3." Nature 630.8016 (2024): 493-500.

THE NOBEL PRIZE
IN CHEMISTRY 2024

John M
Hassabis Jumper

“for computational “for protein structure prediction”
protein design”

THE ROY

“Here we describe our AlphaFold 3

model with a substantially updated

diffusion-based architecture that is
capable of predicting the joint

structure of complexes including
proteins, nucleic acids, small
molecules, ions and modified
residues.”
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How can we use GenAl in drug discovery?

GenAl to:
e Explain response via key

mechanism p(x, y)
e Discover novel insights

through lab-in-the-loop ‘
e Predict responses for

therapies

Probability
distributions

‘4

Multiplication gives the joint
p(y[x)
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Molecule generation

The space of molecules is estimated to be ~10°°.
It is a gigantic, combinatorial space.
Goal: Generate novel molecules

Constraints: Specific properties must be fulfilled

EXAMPLE: DSP-1181

One of the earliest and most notable examples of
Al-assisted drug discovery is DSP-1181, an
obsessive-compulsive disorder (OCD) treatment
discovered by Exscientia in collaboration with
Sumitomo Dainippon Pharma around 2019-2020.

The Al system analyzed vast datasets of molecular
structures and their biological activities. What
traditionally might have taken 4-5 was compressed
into about 12 months. DSP-1181 passed Phase |
clinical trials.

Item 2
target B
S Compound proposals
, ~~. showing a good profile
o . fortargets Aand B

De novo design

’ Target prediction

Virtual compound 1 ~@..@+-@ @ @

Virtual compound 2 oo
Virtual compound 3 9 , ? . . , ' —

Item 1

target A
BB Exscientia Al platform
! Sumitomo Dainippon Pharma Co., Ltd. |
Proposals
O @ O @ @
Compound A Compound B Compound C Analogue A Analogue B
+
@ @ O O

Exscientia Ltd. C db ¢ dE C 1F Analogue C
S gwees Al proposals Medchem design
t Synthesize
Data input ‘

Test, in vitro

BEEE 2-week cycle

Hideaki Imai et al. "An Innovative Approach to the Discovery of DSP-1181: Contributions of Artificial Intelligence,
Optogenetic Technology, and Translational Biomarkers to CNS Drug Discovery", Technical Report, 2021
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Representing molecules

o) _
/ -
N N
CN1C=NC2=C1C(=O)N(C(=0)N2C)C )\ | />
07N N

SMILES Molecular Molecular graph
graph +
3D positions
Text (tokens) Graph Graph

or
Voxels
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Molecule Generation with Joint VAEs
SMILES input ©

or graphs cleccect

ENCODER
Neural Network

Inp(x,y) = Inp(y|x) + Inp(x)

CONTINUOUS
MOLECULAR
REPRESENTATION
(Latent Space)
PROPERTY
PREDICTION
DECODER

Neural Network oo

SMILES output ©

or graphs cleceec]

47

Gomez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018): 268-276.



Molecule Generation with Joint VAEs
SMILES input ©

or graphs cleccect

ENCODER
Neural Network

Inp(x,y) = Inp(y|x) + Inp(x)

CONTINUOUS
MOLECULAR
REPRESENTATION (V) AE
(Latent Space)
PROPERTY
PREDICTION
DECODER

Neural Network oo

SMILES output ©
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Molecule Generation with Joint VAEs
SMILES input ©

or graphs cleccect
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Molecule Generation with Joint VAEs
SMILES input ©

or graphs cleccee!
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ENCODER Property .
Neural Network f2)
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MOLECULAR I
REPRESENTATION f(z) :
(Latent Space)
PROPERTY
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SMILES output
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Molecule Generation with GANs

Sampled A

Adjacency tensor A

Generator

AN

z ~p(z)

4y -

Graph

7 3
\O\O'

Molecule

“~
\

Objective: adversarial loss + RL

L(6) =A-Lygan(@) + (1 —A)-Lg,(0)

An unconditional model: p(graph)

De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018).

\
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Discriminator
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0/1 )
__/

Reward network
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Molecule Generation with GANs

Adjacency tensor A Sampled A Graph
/ // N (// O ™\ Discriminator
. ) } SN T\
N Q/O Y LGCNW [0/1)
Generator 1 _/ __/
: O\O
Sampled % Molecule
z ~p(z) F i \\ vl ’\\\ Reward network
‘ O
N| Il N j "
| NH Sl W,
I 1 L jl S
\ T // \ i /} \ /J

Objective: adversarial loss + RL

L(6) =A-Lygan(@) + (1 —2) L, (0)

generation
An unconditional model: p(graph)
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Molecule Generation with GANs

Adjacency tensor A Sampled A Graph
/, _ - ~ // \\ { Ve ™~ Discriminator
X 3 ™~ )
Q/O Y GCN 0/1 |
Generator O\C) @) (7) —_/
A\ e \_
Annotation matrix X Molecule
z ~p(z) o/ & N Reward network
[ O
/- B -~
N | NH \,GCNJ (on)
) ==\ > )
Objective: adversarial loss + RL
L(6) =A-Lygan(6) + (1 —2) - Lg,(6)
properties

generation
An unconditional model: p(graph)

De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018). 53



Molecule Generation with GANs

Adjacency tensor A Sampled A Graph
/, _ - ~ // \\ { Ve ™~ Discriminator
X 3 ™~ )
Q/O Y GCN 0/1 |
Generator O\C) @) (7) —_/
A\ e \_
Annotation matrix X Molecule
z ~p(z) o/ & N Reward network
[ O
/- B -~
N | NH \,GCNJ (on)
) ==\ > )
Objective: adversarial loss + RL
L(6) =A-Lygan(6) + (1 —2) - Lg,(6)
properties

generation
An unconditional model: p(graph)

De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018). 54



Molecule Generation with Autoregressive Models

xLSTM Bio-xLSTM: modeling approaches
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Molecule Generation with Autoregressive Models

A joint transformer-based model: p(SMILES & properties) Antimicrobial Peptide Design
a™ —Fei
transformer block
X L
() / ) /—\ ( g \
l c .03 'g 3nos
O ) g) :g 5 -qc’ —> Property H
— c D £
he} = 0.04
O—1 3 § £ g _a
2 Z < z o
O > E - [ O > - > 0.02
O w 3 & S £ = s
S 3 g S g E T°ken 000 A CDETFGHII KLMNPROQRSTVWY
O— £ g £ & [ probabilities
= = = N Amino-acid distributions between the pre-trained and unconditionally
O— K = / generated sequences
— — 4
C Hydfophoj«:ity
[TASK] — P o w9
g 107" Iw.oo
8. . 075
Conditional generative performance on antimicrobial peptide design. The best model is bold. S 050
:E; 8"1072 Y W -0.25 °
b1 <
MODEL PERPLEXITY? DIVERSITY T FITNESS T HYDRAMPyc T AMPLIFY T AMPEPPY 1 ;é, '1!r @%IFQ' 0 '0';)255
2 7x107 r i
PEPCVAE 20.08 0.86 0.07 0.20 0.49 0.52 M o® o M 3 x 0
AMPGAN 18.49 0.80 0.12 0.32 0.64 0.54 _— [c) I Lt
HYDRAMP 20.14 0.86 0.09 0.49 0.59 0.52 00
AMP-DIFFUSION 16.84 0.82 0.12 0.26 0.20 0.38 7 ™
HYFORMER 17.24 0.80 0.19 0.80 0.94 0.72 Frequoncy (Iog scale) °

The attention mechanism frequently prioritizes highly charged Arginine
(R) and Arginine (K), which is expected as high AMP activity is associated

Izdebski, Adam, et al. "Synergistic Benefits of Joint Molecule Generation and Property Prediction." arXiv preprint arXiv:2504.16559 (2025) with increased Charge' 56



Molecule Generation with Diffusion Models

0,0 -4
- OO O — OO
}“;3 00 OO0 R C?Cg)o 0

Molecular graph 4 \ 4 \
alzr,-.-lz.h) |\ p(@,h,...|2r) azr,...lz.h) |\ p(@,h,.. J2r)
+ diffuse ! denoise diffuse | denoise
A 4 A 4

3D positions

Equivariance is important -

An unconditional model: p(3D molecule)

p(z; h) p(Re, h)
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Hoogeboom, Emiel, et al. "Equivariant diffusion for molecule generation in 3d." International conference on machine learning. PMLR, 2022.



Molecule Generation with Diffusion Models

Denoising Molecule Diffusion

58

Hoogeboom, Emiel, et al. "Equivariant diffusion for molecule generation in 3d." International conference on machine learning. PMLR, 2022.



Molecule Generation with Diffusion Models

e D
Mo Invariant Graph

SNaAL O $ H Neural Network ] Latent 2
T pe (2| Mo)

\ J

A conditional model: p(3D molecule | 3D molecule seed)

Le, Tuan, et al. "Equivariant diffusion for structure-based de novo ligand generation with latent-conditioning." Journal of Cheminformatics 17.1 (2025): 1-12.
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Molecule Generation with Discrete Diffusion Models
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Lee, Seul, et al. "GenMol: A Drug Discovery Generalist with Discrete Diffusion." arXiv preprint arXiv:2501.06158 (2025). ’;’:;‘;:;';egken \;L\/Yﬂ\ 60
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Molecule Generation with Diffusion Models

' ranked poses &

gard & DIFFDOCK > «ap

protein confidence score
reverse diffusion over

NO\ 2 = translations, rotations and torsions t=0 , @

Y

A conditional model: p(3D molecule | 2D molecule seed & protein structure)

https://huggingface.co/spaces/reginabarzilaygroup/DiffDock-Web
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Corso, Gabriele, et al. "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking." International Conference on Learning Representations (ICLR 2023). 2023.



How can we use GenAl in drug discovery?

GenAl to:
e Explain response via key

mechanism p(x, y)
e Discover novel insights

through lab-in-the-loop ‘
e Predict responses for

therapies

Probability
distributions

‘4

Multiplication gives the joint
p(y[x)
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Understanding regulatory mechanisms of diseases

Regulators are natural compounds that control biochemical
reactions.

dysregulation

N\

A dysregulation results in a misbehavior of a biological system.

EXAMPLE: Vitamin B, \

In folate methionine cycle: Methionine synthase transfers
the methyl group to the vitamin and then transfers the
methyl group to homocysteine, converting that to

methionine. )\)HA/CS/\ A )\JK/E ]A Ar

Vitamin B, deficiency results in in an increased

N5- methyl THF tetrahydrofolate (THF)

homocysteine level and the trapping of folate as T viemng,  meiniog
5-methyl-tetrahydrofolate, from which THF (the active form j’ ’ 5 / )SH
of folate) cannot be recovered. o I

O :
O\Ic])/\g)H3 o\g/\gm

methionine (met) homocysteine (hyc)

As a result, vitamin B, deficiency causes megaloblastic
anemia. 63

THF plays an important role in DNA synthesis.




GenAl for screening regulators of biochemical processes

NatinLab developed a GenAl-based in-house platform to screen
natural regulators for a target of Alzheimer’s disease.

» INatinLab

ﬁ O PyTorch
i d“” A DeepChem
o 5B % : P
%ﬁ .
mg@‘z f; O PyTorch
f’# e 'j q} Generative Al + 2l Oockin ®,
g & ‘Q’;f;;r gy‘:-?* Deep Learning filters &8 g s
¢o
& . Bad
e ‘?‘
& o
>220k candidates 10k candidates 5k candidates 1.4% of the
natural regulators original
candidates

Candidates for LEADS!
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How can we use GenAl in drug discovery?

GenAl to:
e Explain response via key

mechanism p(x, y)
e Discover novel insights

through lab-in-the-loop ‘
e Predict responses for

therapies

Probability
distributions
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Enzyme kinetics: Do it fast and accurately!

Enzyme kinetics the discipline that studies

- how enzymatic reactions take place, E+S ~=——ES ——» E+P

- the rate at which they occuir,
- and the influence of environmental conditions
in the reaction process.

Binding Catalysis

/ EXAMPLE \
Michaelis-Menten model describes how the (initial) reaction e
rate depends on the position of the substrate-binding 125 1
equilibrium and the rate constant: 100 {
Vmax [S] 0.50
— def
UO == KM + [S] where Vmax — kca,t [E] tot :.:::

Q How to calculate K, and k__in an efficient way? j
66




GenAl for enzyme kinetics: A local model

a)
M rement ifferent . ) . . . .
HeslTCEnEaLd s Michaelis-Menten plot Michaelis-Menten plot Michaelis-Menten plot
substrate concentrations V =k E
. . _________ ax_ cat 0
o
s - . %
3 B 3 Values of:
8 >3 —>3 . —> ¢ K
% % % g max M
e k
] o I n ] cat
> > > |
1
Substrate Substrate KM Substrate
b)
Measurements at one . . i ) 5 . .
substrate conicentration Sample from prior Slmulate data Then check if: | v;car — Vgim ||~ < €7 Approximate posterior
using the model:
dP / / r'ﬂ_"l_h Values of:
V= — . KM
/’/ / _f/)
P () dt f _//'/ G 9 . kcat
— /' == =
L anll 4&,/ o

a. The standard approach using multiple measurements and the Michaelis-Menten plot.
b. Our proposed computational method: Use a single measurement and a simulator to identify parameters.

Tomczak, J. M., & Weglarz-Tomczak, E. (2019). Estimating kinetic constants in the Michaelis—Menten model from one enzymatic assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750. 67



GenAl for enzyme kinetics: COVID-19

a b

= i | === 500.0 » 6000 — 500.0

5 10000 T | == 2500 § = 250.0
During COVID-19, we used a modified — s =
version of our previously proposed methodto % — 200 ———

® m— 301 ® — 3.91
estimate the enzyme kinetics parameters. £ o £ o

0 20time [min]40 *0 0 » ti?r?e [min7]5 100

It greatly helped us to speed up the process!

Ouir first findings on May 17, 2020
(on bioRxiv ~2 months after first

s Kwm
infections in the Netherlands). d e = —
—— Model: kegr=9.1, Ky=300.7 —— Model: kc5t=2.0, Ky=195.5
» . 6000
£ 10000 5
= €
g 7500 & 4000
2 ?
¢ g
S 5000 E
.;).) 2000
Z 2500 E
& 0 ¢ 0
[ 20 40 60 0 25 50 75 100
time [min] time [min]
f

keat [s7Y] Kwn [pM] keat/Km [s71M7Y
PLPSARS | 9.1 £ 05 |300.7 £ 20.2 0.030 + 0.003
PLPPCoV2 | 20 £ 03 | 1955+ 5.2 0.010 + 0.001
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Weglarz-Tomczak, E., Tomczak, J. M., Talma, M., Burda-Grabowska, M., Giurg, M., & Brul, S. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 3640.



How can we use GenAl in drug discovery?
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Phenotypic profiling: Getting insights into Mechanism of Action (MOA) of drugs

Image-based phenotypic profiling of small
molecules can be used for:
- identification and characterisation of small
molecules in drug discovery
- Getting important insights into their mechanisms
of action (MOA).

/ EXAMPLE: BBBC021 \

We used the BBBC021 dataset containing microscopy
images of MCF7 breast cancer cell lines treated with
113 compounds for 24 hours.

We focus on 39 compounds with a visible impact on
cell morphology, which was associated with 12 distinct
MoA labels

Eventually, we got 2,526 wells (bags), 133,628 cells

wtal number of instances), and 12 MoAs (labels). /

https://www.broadinstitute.org/news/lipocyte-profiler-metabolic-biology-tool
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MixMIL: A probabilistic model with attention mechanism

a Single-cell transcriptomics b bag of instance embs Instance weights
T %
1 1Y
Instance emb X=|:|erR*XQ — w,y(X) = softmax([ : ) € Rf
L 1 —— [ 1 il i
Embedding x; € ]RQ \ /
attention-pooled . T Q
zZy(X) =X wy(X) €R
Single-cell microscopy bag embs Y l v
y Instance emb GLNM mocel random effects
| S — T 4
© i w— 9E[Y) =c"a+2(X)"B  p~N(O 0}Tox)
HTEesg x; €R bag 7 covariate Bag emb v~ N(O,U?YIQXQ)
label effects effects

a. MixMIL uses predefined instance embeddings from domain-specific unsupervised models.

b. Generalized multi-instance mixed model framework defining MixMIL.

71

Engelmann, J. P,, Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Atrtificial Intelligence and Statistics (pp. 3664-3672). PMLR. (oral)



MixMIL for Mechanism of Action Prediction

Method Bal. Accuracy F1 Macro F1 Micro oom-welghted
Bayes-MIL 0.63 £ 0.02 0.63+£0.02  0.70£0.01  gavee ML 'Qe o
ABMIL 0.72 £ 0.02 0.73+0.01  0.76 £0.01 ‘ p ¢
Gated ABMIL 0.67 +0.03 0.65+0.03  0.70 +0.03

Additive ABMIL ~ 0.41 £0.00 0.34+0.00  0.47 £0.02

DSMIL 0.89 £ 0.02 0.89+0.02 090+001  ABMIL

MixMIL 0.94+0.02  0.94+0.01 0.95+0.01

DSMIL

Our approach achieves SOTA results on the

multi-label classification problem! MixMIL

94% of images are properly assigned to a MOA!
Additionally, our approach properly identifies

less important images by assigning them low

attention weight.

72

Engelmann, J. P.,, Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Atrtificial Intelligence and Statistics (pp. 3664-3672). PMLR.
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Mechanistic modeling of biological systems

One of the central elements in systems biology is the
interaction between mathematical modeling and
measured quantities.

Biological phenomena can be represented as
dynamical systems, and they can be further
analyzed and comprehended by identifying model
parameters using experimental data. .
/ EXAMPLE: Glycolytic pathway in baker’s yeast \ S

[T o Pysces
DL, st st sysns

........................

We used the glycolytic pathway in Saccharomyces
cerevisiae (baker’s yeast), a well-studied biological
model, to verify whether it is possible to identify
parameters of reactions for only limited measured
metabolites.

This is a common situation that not all quantities can be
Qauged. Al and computational methods can help us here/
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GenAl for Parameter ldentification of Dynamical Systems with Missing Observations

Parameter Identification m

Z j k11, k12
/ k21, K22, k23
f\/ k3
Differential Limited data f R
equations . d} 41> K42
) qr\ Population-based T P ¢
e R optimization imecourses Parameter
[ I Bt \PySCeS‘ 5 values
ONLINE
4— Generation:Os o Generation: 1 4 Generation: 2 i Generation: 3
i\ : 3\ / 3\ // 3| \ //
\ / \ // \
2 \Q\ / 2 \ // 2 \ // 2 \\ /
1 . / 1 1 1
0 \-/ 0 \\“\,/ 0 \M/ 5 \L/
-2 0 2 -2 -1 0 1 2 2 -1 0o 1 2 -1 0 1
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Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-based parameter identification for dynamical models of biological networks with an application to Saccharomyces cerevisiae. Processes, 9(1), 98.



GenAl for Parameter ldentification of Dynamical Systems with Missing Observations

glucose

—O—=-0

v2 ATP vit

N
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It is possible to infer parameter values based on a limited set of observations!
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Molecular Science with Agentic Al

Problem: Apigenin is a good starting
guess
A Com plex, fu I Iy LLM -based approaCh The organism Plumbago spp. contains a compound with formula C16H1207. What's a likely
SMILES based on its biochemistry?
ethex0: r
SFT on reasoning . Okay, so | need to figure out a likely SMILES structure for a compound with the formula C16H1207 found in Ky
tt s o N g ’ Plumbago spp. Plants in the genus Plumbago often produce flavonoids and coumarins. The formula o —
. patterns user: HO— /=0 , O3 O ik s+ > ) Br —ooos, C16H1207 suggests flavone or flavonol structure, rather than coumarin derivatives with C9H602 as a base. |, Quercetin is closest named
R1/Mistral Instruct Base Reasoner > A 3 o molecule the model knows
{ First, consider flavones, which are flavonolignans. Apigenin, a flavone, has the formula C15H1005. Adding one*
\ carbon (C16H1205) could work, but we need two more oxygens: possible additional hydroxyl groups or a
thezo methoxy group. However, subtropical flavonoids might be glycosylated.
ether0: :
'GRPO on Looking at the reactants, the first molecule, C(C) Let's consider luteolin (C15H1006) with a methyl group (CH3). Methylated luteolin would be C16H1206.
verifiable tasks (C)C1=C(C=C(C(=C1)OC)C)O, appears to be a phenol derivative Adgmg another oxygen is tricky. Perhaps a carboxylic acid group (COOH) making it C17H1808 does not fi -
i P either. e = =
( ialist 1 ) ( ali 2) ( iali N) with some alkyl and alkoxy substituents. The second molecule, e unuisidoEeEESERE R
Specialist Specialist ... _Specialist C([0-1)([0-1)=0, is oxalic acid, but given the context and the Consider myricetin (C15H1008) Wit g to C15H1008 does arrange coupling with C16H1207 if have..
presence of potassium ions ([K*1.[K#), it's more likely that this additional methyl group. Quercetin is C15H1007: adding a methyl group would be C16H1207, which fits. >~
Rejection Sampling represents potassium carbonate (K2C0O3), acommon base in Quercetin (C15H1007) plus a CH3 group becomes C16H1207. So substituting one H with a CH3 group. *~.] Examples of unnatural text
< 2 Quercetin approximates C15H1007 (338 g/mol). Methylating it would add a CH3 group replacing a hydrogen /I that emerge from RL
Selected Outputs organic chemistry.... - summing up +31 (13 vs. P7 - maybe more accurately degradation oxygen variation). :
o ] 127 words skipped Flavonoids are glycosylated. Quercetin-3'-O-methyl ester would add C towards C16H1207. :. This compound was answer
Distillation Alternatively, consider apigenin (C15H1005) plus a methyl group - C16H1205. Add an additional carboxylic ¢ | from non-reasoning GPT-4.5
o 5 acid > C17H1207). :
S ..So, putting it all together, the likely product would be the ...truncated... "
SFT Generalists & g o A methylated flavonol with C16H1207 could be kaempferol methy! ether. Kaempferol is C15H1006 - hydrogen .} *~
nlesull'éof thz ealbvlationeactionhbetveenthizphenataudiie might be added more "methoxy". Thus replace one hydrogen - C15 - making C16H1206. 3
alkyl bromide: .
All-task GRPO l Finally, consider quercetin (C15H1007) adding CH3 - C16H1207. This fits whatever oxygenated compound |
\ / plus methane. E
. — / 0
ether® 3 ether6: /_" Hence, let's verify Quercetin-C. Quercetin (C15H1007). Changing one phenolic OH - Cu added a methoxy.
24B Chemistry e F N Hence, C16H1207. Thus, a flavonol methylated. Alternating return on DMSO query filling this molecule would
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Life/Molecular Science with Agentic Al

Combining LLMs with generative models
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fz_‘ Reasoning

Direct reasoning
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GenAl for Life & Molecular
Sciences:
Conclusion



GenAl offers more than LLMs, but LLMs are GenAl

GenAl can (should!) be used for computational
chemistry and computational biology

GenAl can drastically speed up the R&D process

GenAl beyond tasks like generating drugs (drug
design), molecular docking, 3D structure generation

GenAl can be useful in:

- understanding biochemical mechanisms,
- pharmacokinetics/dynamics,

- mechanism of action,

- enzyme kinetics,

- and many more!

Future: GenAl for digital cells/organisms
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Thank you!
Questions?

Jakub M. Tomczak, Ph.D.
Generative Al Leader

Chan Zuckerberg Initiative
Founder of Amsterdam Al Solutions

= jmk.tomczak@gmail.com

https://jmtomczak.github.io/
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