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DISCLAIMER:
1. Wherever I can, I drop a reference to my paper.
2. There are gazillion of papers; here we use some 
pointers for further exploration!
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Why GenAI in Life & Molecular 
Sciences?
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Drug discovery: R&D is about 4-7y

4



Drug discovery 2.0: The premise of GenAI is to speed up the process (and make it cheaper)
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1-2 years1 year

For instance:
Open databases
GenAI for understanding molecular mechanisms

For instance:
GenAI for (de novo) drug design
GenAI for phenotypic profiling



What can we do with GenAI in 
Life & Molecular Science?
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(Selected) Tasks that can be solved by or enhanced with GenAI
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GenAI as digital models of biology/chemistry

8Noutahi, E. et al. (2025, June). Virtual Cells: Predict, Explain, Discover. arXiv

GenAI to:
● Explain response via key 

mechanism
● Discover novel insights 

through lab-in-the-loop
● Predict responses for 

therapies



GenAI as digital models of biology/chemistry

9Noutahi, E. et al. (2025, June). Virtual Cells: Predict, Explain, Discover. arXiv



But first: What is GenAI?
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GenAI = Generative Modeling with Deep Neural Networks
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The marginal-conditional-joint triangle



General idea is to factorise the joint distribution:

and use neural networks (e.g., convolutional NN) to model it efficiently:
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Autoregressive models



Parameterizing conditional distributions with Convolutional Neural Networks
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Autoregressive models

Skip current token!

Use dilation to 
enlarge the context 
window!



Autoregressive models as parts of other models
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reconstruction generation

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.



Autoencoders parameterized by Transformers
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Transformer(seq):

    X = We Tseq

for l in range(L):

  X = X + M(X)

  X = LayerNorm(X)

  ∀n  xn = MLP(xn) + xn

  X = LayerNorm(X)

V – vocabulary
T = tokenizer(sequence, V) ∈ {0,1}|V|×N

We ∈ RD×|V| – embedding 
M ∈ RD×N – multi-head attention



Autoencoders parameterized by Transformers
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Autoencoders parameterized by Transformers: Encoders
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Autoencoders parameterized by Transformers: Decoders
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Autoencoders parameterized by Transformers: Encoder-Decoders
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Flow-based models

Sample from a “simple” distribution:

Apply a sequence of K invertible transformations:

and the change of variables yields: 

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015

0 0 0

...
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Flow-based models

Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. Normalizing Flows for Probabilistic Modeling and Inference. JMLR, 2021
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Flow-based models: Affine coupling layers τ is the affine transformation
s and t are the scaling and translation

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015
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Flow-based models: Affine coupling layers

Why it’s so special about affine coupling 
layers?

The Jacobian is easily computable!

Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. ICML 2015



Latent Variable Models
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We assume data lies on a low-dimensional manifold so the generator is:

where:

Two main approaches:

→ Generative Adversarial Networks (GANs)

→ Variational Auto-Encoders (VAEs)



Generative Adversarial Networks
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We assume a deterministic generator:

and a prior over latent space:

How to train it? By using a game!

For this purpose, we assume a discriminator:

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014



Generative Adversarial Networks
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The learning process is as follows:

→ the generator tries to fool the discriminator;

→ the discriminator tries to distinguish between real and fake images.

We define the learning problem as a min-max problem:

In fact, we have a learnable loss function!

But the min-max problem is hard to solve.

Goodfellow, I., et al. (2014). Generative adversarial nets. NIPS 2014



Variational Auto-Encoders
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We assume a stochastic generator (decoder) and a prior:

Additionally, we use a variational posterior (encoder):

For Gaussians, we can use the re-parameterization trick to lower the gradient variance:

How to train it? Using the log-likelihood function!

For the variational inference, we get the evidence lower-bound (ELBO):

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. (ICLR 2014)



Variational Auto-Encoders
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Deriving the ELBO:

Variational posterior



Variational Auto-Encoders
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Deriving the ELBO:

Jensen’s inequality



Variational Auto-Encoders
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Deriving the ELBO:

Reconstruction error Regularization



Diffusion-based models
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Imagine hierarchical VAE with variational posteriors being very simple Gaussians defined as follows:

An example:

The ELBO is the following (nothing new but if T is large, it’s super hard to calculate it!):

forward diffusion process

backward diffusion process

Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International conference on machine learning. pmlr, 2015.



Diffusion-based models

33

Let’s notice that the forward diffusion process is a composition of linear Gaussian models, hence, we can 
calculate the following distributions:

where: 

and

where:



Diffusion-based models
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Then the super expensive ELBO:

becomes:

and:

- We can approximate the middle term by sampling t and use MC-samples for calculating the ELBO

- We can even set λt to 1 (a.k.a. the simple loss)

- Training: Sample t, sample noise є, sample zt, then predict noise єθ and calculate the update.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33 (2020): 6840-6851.



Diffusion-based models for modeling joint distributions

35

We can learn a joint distribution with a diffusion model and take advantage of representations learnt by the 
UNet. For example, visual counterfactual explanations.

1. Forward diffusion: Adding 20% of noise (t=0 → t=0.2T)

2. Flipping the label

3. Backward diffusion: Generating (t=0.2T → t=0)



Energy-based models
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An Energy-based model (EBM) specifies a density of x by:

where:

This is a widely-known as Boltzmann distribution.

The energy function E defines high-energy (i.e., high-probability mass) regions, e.g. (Restricted Boltzmann 
Machines):

Modern EBMs: the energy function = a neural network.

Inspiration: statistical physics.

It belongs to the exponential family of distributions: p(x) = eη(θ)T(x) - A(θ) + B(x)



Part 2
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How can we use GenAI in drug 
discovery?

38
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How can we use GenAI in drug discovery?
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through lab-in-the-loop
● Predict responses for 

therapies



40

How can we use GenAI in drug discovery?

Models 
= 

Probability 
distributions

Multiplication gives the joint

Pr
od

uc
t r

ul
e Sum

 rule

GenAI to:
● Explain response via key 

mechanism
● Discover novel insights 

through lab-in-the-loop
● Predict responses for 

therapies



Protein solving

41

Predicting the three-dimensional structure that a protein will 
adopt based solely on its amino acid sequence has been an 
important open research problem for more than 50 years.

Goal: Given a 1D sequence of amino acids, predict a 3D 
structure of a protein.

EXAMPLE: CASP14 competition

The CASP assessment is carried out biennially using 
recently solved structures that have not been deposited in 
the PDB or publicly disclosed so that it is a blind test for the 
participating methods, and has long served as the 
gold-standard assessment for the accuracy of structure 
prediction.

CASP14 was considered particularly challenging compared 
to previous CASP competitions. For instance, the 
competition included many proteins with limited homologous 
sequences in databases, making it harder for methods that 
rely on evolutionary information.



AlphaFold 2

42Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589.

“Here we provide the 
first computational 
method that can 
regularly predict 

protein structures with 
atomic accuracy even 
in cases in which no 
similar structure is 

known.”



AlphaFold 3

43Abramson, Josh, et al. "Accurate structure prediction of biomolecular interactions with AlphaFold 3." Nature 630.8016 (2024): 493-500.

“Here we describe our AlphaFold 3 
model with a substantially updated 
diffusion-based architecture that is 

capable of predicting the joint 
structure of complexes including 

proteins, nucleic acids, small 
molecules, ions and modified 

residues.”
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Molecule generation

45

The space of molecules is estimated to be ~1060.
It is a gigantic, combinatorial space.
Goal: Generate novel molecules

Constraints: Specific properties must be fulfilled

EXAMPLE: DSP-1181

One of the earliest and most notable examples of 
AI-assisted drug discovery is DSP-1181, an 
obsessive-compulsive disorder (OCD) treatment 
discovered by Exscientia in collaboration with 
Sumitomo Dainippon Pharma around 2019-2020.

The AI system analyzed vast datasets of molecular 
structures and their biological activities. What 
traditionally might have taken 4-5 was compressed 
into about 12 months. DSP-1181 passed Phase I 
clinical trials.

Hideaki Imai et al. "An Innovative Approach to the Discovery of DSP-1181: Contributions of Artificial Intelligence, 
Optogenetic Technology, and Translational Biomarkers to CNS Drug Discovery", Technical Report, 2021



Representing molecules

46

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

SMILES Molecular 
graph

Molecular graph
+

3D positions

Text (tokens) Graph Graph
or

Voxels



Molecule Generation with Joint VAEs

47Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018): 268-276.



Molecule Generation with Joint VAEs

48Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018): 268-276.



Molecule Generation with Joint VAEs

49Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018): 268-276.



Molecule Generation with Joint VAEs

50Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4.2 (2018): 268-276.



Molecule Generation with GANs

51De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018).

An unconditional model: p(graph)



Molecule Generation with GANs

52De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018).

An unconditional model: p(graph)



Molecule Generation with GANs

53De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018).

An unconditional model: p(graph)



Molecule Generation with GANs

54De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit generative model for small molecular graphs." arXiv preprint arXiv:1805.11973 (2018).

An unconditional model: p(graph)



Molecule Generation with Autoregressive Models

55Schmidinger, Niklas, et al. "Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences." Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and Challenges.

A conditional model: p(SMILES | properties)



Molecule Generation with Autoregressive Models

56Izdebski, Adam, et al. "Synergistic Benefits of Joint Molecule Generation and Property Prediction." arXiv preprint arXiv:2504.16559 (2025)

A joint transformer-based model: p(SMILES & properties) Antimicrobial Peptide Design

Amino-acid distributions between the pre-trained and unconditionally 
generated sequences

The attention mechanism frequently prioritizes highly charged Arginine 
(R) and Arginine (K), which is expected as high AMP activity is associated 

with increased charge.



Molecule Generation with Diffusion Models

57Hoogeboom, Emiel, et al. "Equivariant diffusion for molecule generation in 3d." International conference on machine learning. PMLR, 2022.

An unconditional model: p(3D molecule)



Molecule Generation with Diffusion Models

58Hoogeboom, Emiel, et al. "Equivariant diffusion for molecule generation in 3d." International conference on machine learning. PMLR, 2022.



Molecule Generation with Diffusion Models

59Le, Tuan, et al. "Equivariant diffusion for structure-based de novo ligand generation with latent-conditioning." Journal of Cheminformatics 17.1 (2025): 1-12.

A conditional model: p(3D molecule | 3D molecule seed)



Molecule Generation with Discrete Diffusion Models

60Lee, Seul, et al. "GenMol: A Drug Discovery Generalist with Discrete Diffusion." arXiv preprint arXiv:2501.06158 (2025).

A generalist model: p(SMILES | condition)
(condition could be None)

GenMol
vs.

ARM

https://build.nvidia.com/nvidia/genmol-generate



Molecule Generation with Diffusion Models

61Corso, Gabriele, et al. "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking." International Conference on Learning Representations (ICLR 2023). 2023.

A conditional model: p(3D molecule | 2D molecule seed & protein structure)

https://huggingface.co/spaces/reginabarzilaygroup/DiffDock-Web
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Understanding regulatory mechanisms of diseases 

63

Regulators are natural compounds that control biochemical 
reactions.

A dysregulation results in a misbehavior of a biological system.

dysregulation

EXAMPLE: Vitamin B12

In folate methionine cycle: Methionine synthase transfers 
the methyl group to the vitamin and then transfers the 
methyl group to homocysteine, converting that to 
methionine.

Vitamin B12 deficiency results in in an increased 
homocysteine level and the trapping of folate as 
5-methyl-tetrahydrofolate, from which THF (the active form 
of folate) cannot be recovered.

THF plays an important role in DNA synthesis.

As a result, vitamin B12 deficiency causes megaloblastic 
anemia.



GenAI for screening regulators of biochemical processes

64

NatInLab developed a GenAI-based in-house platform to screen 
natural regulators for a target of Alzheimer’s disease.
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Enzyme kinetics: Do it fast and accurately! 

Enzyme kinetics the discipline that studies

- how enzymatic reactions take place,
- the rate at which they occur, 
- and the influence of environmental conditions 

in the reaction process.

66

EXAMPLE

Michaelis-Menten model describes how the (initial) reaction 
rate depends on the position of the substrate-binding 
equilibrium and the rate constant:

where

Q: How to calculate KM and kcat in an efficient way?



GenAI for enzyme kinetics: A local model

67Tomczak, J. M., & Węglarz‐Tomczak, E. (2019). Estimating kinetic constants in the Michaelis–Menten model from one enzymatic assay using Approximate Bayesian Computation. FEBS letters, 593(19), 2742-2750.

a. The standard approach using multiple measurements and the Michaelis-Menten plot.

b. Our proposed computational method: Use a single measurement and a simulator to identify parameters.



GenAI for enzyme kinetics: COVID-19 

68Weglarz-Tomczak, E., Tomczak, J. M., Talma, M., Burda-Grabowska, M., Giurg, M., & Brul, S. (2021). Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Scientific reports, 11(1), 3640.

During COVID-19, we used a modified 
version of our previously proposed method to 
estimate the enzyme kinetics parameters.

It greatly helped us to speed up the process!

Our first findings on May 17, 2020 
(on bioRxiv ~2 months after first 
infections in the Netherlands).
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Phenotypic profiling: Getting insights into Mechanism of Action (MOA) of drugs

70

Image-based phenotypic profiling of small 
molecules can be used for:

- identification and characterisation of small 
molecules in drug discovery

- Getting important insights into their mechanisms 
of action (MOA).

https://www.broadinstitute.org/news/lipocyte-profiler-metabolic-biology-tool

EXAMPLE: BBBC021

We used the BBBC021 dataset containing microscopy 
images of MCF7 breast cancer cell lines treated with 
113 compounds for 24 hours.

We focus on 39 compounds with a visible impact on 
cell morphology, which was associated with 12 distinct 
MoA labels

Eventually, we got 2,526 wells (bags), 133,628 cells 
(total number of instances), and 12 MoAs (labels).



MixMIL: A probabilistic model with attention mechanism

71Engelmann, J. P., Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Artificial Intelligence and Statistics (pp. 3664-3672). PMLR. (oral)

a. MixMIL uses predefined instance embeddings from domain-specific unsupervised models.

b. Generalized multi-instance mixed model framework defining MixMIL.



MixMIL for Mechanism of Action Prediction

72Engelmann, J. P., Palma, A., Tomczak, J. M., Theis, F., & Casale, F. P. (2024, April). Mixed Models with Multiple Instance Learning. In International Conference on Artificial Intelligence and Statistics (pp. 3664-3672). PMLR.

Our approach achieves SOTA results on the 

multi-label classification problem!

94% of images are properly assigned to a MOA!
Additionally, our approach properly identifies 

less important images by assigning them low 

attention weight.
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Mechanistic modeling of biological systems

74

One of the central elements in systems biology is the 
interaction between mathematical modeling and 
measured quantities. 

Biological phenomena can be represented as 
dynamical systems, and they can be further 
analyzed and comprehended by identifying model 
parameters using experimental data.

EXAMPLE: Glycolytic pathway in baker’s yeast

We used the glycolytic pathway in Saccharomyces 
cerevisiae (baker’s yeast), a well-studied biological 
model, to verify whether it is possible to identify 
parameters of reactions for only limited measured 
metabolites.

This is a common situation that not all quantities can be 
gauged. AI and computational methods can help us here.



GenAI for Parameter Identification of Dynamical Systems with Missing Observations

75Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-based parameter identification for dynamical models of biological networks with an application to Saccharomyces cerevisiae. Processes, 9(1), 98.



GenAI for Parameter Identification of Dynamical Systems with Missing Observations

76Weglarz-Tomczak, E., Tomczak, J. M., Eiben, A. E., & Brul, S. (2021). Population-based parameter identification for dynamical models of biological networks with an application to Saccharomyces cerevisiae. Processes, 9(1), 98.

1

2

3

4

1 2

3 4

It is possible to infer parameter values based on a limited set of observations! 
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Molecular Science with Agentic AI

78Siddharth Narayanan et al. "Training a Scientific Reasoning Model for Chemistry." Technical Report, June 5, 2025

A complex, fully LLM-based approach



Life/Molecular Science with Agentic AI

79Gao, Shanghua, et al. "Empowering biomedical discovery with AI agents." Cell 187.22 (2024): 6125-6151.

Combining LLMs with generative models



GenAI for Life & Molecular 
Sciences:
Conclusion

80



Conclusion
GenAI offers more than LLMs, but LLMs are GenAI

GenAI can (should!) be used for computational 
chemistry and computational biology

GenAI can drastically speed up the R&D process

GenAI beyond tasks like generating drugs (drug 
design), molecular docking, 3D structure generation

GenAI can be useful in:

- understanding biochemical mechanisms,
- pharmacokinetics/dynamics,
- mechanism of action,
- enzyme kinetics,
- and many more!

Future: GenAI for digital cells/organisms
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Jakub M. Tomczak, Ph.D.
Generative AI Leader

Chan Zuckerberg Initiative
Founder of Amsterdam AI Solutions

✉  jmk.tomczak@gmail.com

🌐 https://jmtomczak.github.io/

82

Thank you!
Questions?


